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Abstract. A field theoretical renormalization group approach at two loop level is applied to the homoge-
neous spin-1 Bose gas in order to investigate the order of the phase transition. The beta function of the
system with d = 4 − ε dimensions is determined up to the third power of the coupling constants and the
system’s free energy on the border of the classical stability is given in next to leading order. It is found
that the phase transition of the interacting spin-1 Bose gases with weak spin-dependent coupling constant
values is of first order.

PACS. 03.75.Mn Multicomponent condensates; spinor condensates – 05.10.Cc Renormalization group
methods – 05.70.Fh Phase transitions: general studies 64.60.-i General studies of phase transitions

1 Introduction

Bose–Einstein condensation (BEC) of dilute, interacting,
scalar atomic gases is widely believed to be a continuous
phase transition. Mean-field theory results based on per-
turbation theory are however contradicting. The simplest
approximations call for a continuous phase transition [1],
while according to the more sophisticated Hartree–Fock
(Popov) approximation BEC is of first order [2–4]. The
contradicting results are understood to be the consequence
of critical phenomena. Namely, close to the critical point,
the different Feynman diagrams develop to the same mag-
nitude, and a perturbative treatment becomes inaccurate.
The different renormalization group calculations are indi-
cating that BEC is a continuous phase transition falling
into the same universality class as the O(2) model of field
theory [5–8].

In experiments made with dilute gases of alkali atoms
in optical traps [9–14] the particles have internal spin de-
grees of freedom. Such systems at low temperatures can
be modeled by Hamiltonians with multiple coupling con-
stant interactions [15–17] in the s-wave scattering limit.
For such a situation, with multiple coupling constants,
(and in the homogeneous case) the order of the transition
is not necessarily of continuous type, as e.g. in the case
of the field theoretical φ4 model with cubic anisotropy,
where fluctuations can induce the transition to be of first
order [18,19].

In this paper we treat the problem of the homogeneous,
spin-1 Bose gas, where two coupling constants arise natu-
rally in the low energy limit. In the absence of an external
magnetic field depending on the magnitude of these two
parameters two possible Bose–Einstein condensed phases
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exist, namely, the ferromagnetic phase, in which the sys-
tem favors a macroscopic magnetization and the polar
phase, in which the system prefers no magnetization. The
gas condensing to the ferromagnetic phase is called the
ferromagnetic gas, while the other is the polar gas (see
Eqs. (4) and the discussion below). We assume zero ex-
ternal magnetic field. For such a system mean-field theory
results are also contradicting. In the Hartree–Fock approx-
imation [20] the phase transition of both the polar and
ferromagnetic gases is of first order. The jump in parame-
ters is the function of the bigger coupling constant, which
is responsible for non spin-flip scatterings. However this
strongly first order type of transition is considered to be
an artifact of the Hartree–Fock approximation such as in
the case of the scalar Bose gas. On the other hand the
Hartree approximation [21], which is in a way a simpler
mean field approximation yields a continuous Bose con-
densation in the polar case, while a first order one in the
case of a ferromagnetic Bose gas. In the latter case the
jump is a function of the smaller coupling constant, re-
sponsible for spin flip scatterings. (The ratio of the two
coupling constants is typically in the order of 10−2.) It
is important to note that the Hartree approximation is
supplying a continuous BEC in the case of scalar Bose
gases [1], and it is related to the leading order approxima-
tion of the 1/N expansion of the O(N) symmetric model
in field theory [22,23]. Because of the above ambiguities a
renormalization group approach is worked out to study the
order of the phase transition of the homogeneous, spin-1
Bose gas. The formulation is based on the assumption that
the phase transition is continuous. In this case the univer-
sal quantities (to leading order in the coupling constants)
and the infrared (IR) behavior of the system can be calcu-
lated from a classical field theory obtained by restricting
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the quantum fields to the zero Matsubara frequency sec-
tor [8,24]. The main conclusion of the paper is that this
assumption leads to contradiction which indirectly proves
that the transition is of first order.

The paper is organized as follows. In Section 2 the
model of the homogeneous spin-1 Bose gas is mapped to
the corresponding classical field theory by neglecting the
nonzero Matsubara frequency components of the quantum
fields. In Section 3 the renormalization program with min-
imal subtraction and dimensional regularization is worked
out up to the order of two loops for the classical field the-
ory. In Section 4 the beta function of the model is given
up to the third power of the coupling constants and the
renormalized free energy is derived up to one loop level.
The critical properties of the system are discussed also in
this section. Some summary is left to Section 5.

2 Classical field theory

The effective Hamiltonian of the low temperature, homo-
geneous, spin-1 Bose gas can be written as

H =
∫

d3x
[

�
2

2M
∇Ψ †

r (x)∇Ψr(x) − µΨ †
r (x)Ψr(x)

]

+
1
2

∫
d3x d3x′V rs

r′s′(x − x′)Ψ †
r (x)Ψ †

r′(x′)Ψs′(x′)Ψs(x),

(1)

with M the mass of an atom and µ the chemical poten-
tial. The bosonic field operator Ψ †

r (x) creates an atom at
position x with spin projection r ∈ {+1, 0,−1}, and the
operator Ψr(x) destroys it. Automatic summation over re-
peated spin indices is implicitly assumed throughout the
paper. The two-particle interaction is modeled by s-wave
scattering, with the interaction potential [15,16]

V rs
r′s′(x − x′) =

δ(3)(x − x′)
4π�

2

M

[
a0

(
P0

)rs

r′s′
+ a2

(
P2

)rs

r′s′

]
, (2)

where a0 and a2 are the s-wave scattering lengths in the
total hyperfine channel F = 0 and F = 2, respectively.
The matrices P0 and P2 are the projection operators in
the 9-dimensional tensor product space of the spin vari-
ables projecting to the subspaces of total hyperfine spin 0
and 2, respectively. The matrix P1, projecting to the total
hyperfine spin-1 subspace is omitted from equation (2),
since it is antisymmetric in its indices and therefore does
not appear in the Hamiltonian (1). The projection matri-
ces can be obtained from the following linear equations:

P0 + P1 + P2 = 1, (3a)
−2P0 − P1 + P2 = S1 · S2, (3b)

4P0 + P1 + P2 = (S1 · S2)2, (3c)

where Si (i = 1, 2) is the spin operator of the ith atom.
Using the usual spin-1 operators in the basis of Sz eigen-
vectors one can get from equations (3) the projection

matrices P0, P1 and P2. Only expressing the needed two,
P0 and P2 are given by:

(
P0

)
RS

=
1
3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 1 0 −1 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 −1 0 1 0 −1 0 0
0 0 0 0 0 0 0 0 0
0 0 1 0 −1 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4a)

(
P2

)
RS

=
1
6

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6 0 0 0 0 0 0 0 0
0 3 0 3 0 0 0 0 0
0 0 1 0 2 0 1 0 0
0 3 0 3 0 0 0 0 0
0 0 2 0 4 0 2 0 0
0 0 0 0 0 3 0 3 0
0 0 1 0 2 0 1 0 0
0 0 0 0 0 3 0 3 0
0 0 0 0 0 0 0 0 6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4b)

with R = 5 − 3r − r′ and S = 5 − 3s − s′.
As shown by Ho [15] and Ohmi and Machida [16], if

a2 > a0 the low temperature, equilibrium phase has a
macroscopic wave function with zero net magnetization,
called as the polar phase in analogy to the 3He case, while
if a0 > a2 the low temperature phase has a wave function
with macroscopic magnetization, called as the ferromag-
netic phase.

In this paper we focus on the determination of the or-
der of the phase transition. Supposing first that the possi-
ble transitions to the polar or to the ferromagnetic phases
of the spin-1 Bose gas are continuous phase transitions and
restricting ourselves to universal quantities of the system,
the problem can be mapped to a classical field theory with
the following bare action [8,24]:

S[ϕ�, ϕ] =
∫

ddx
[1
2
∂µϕ�

r(x)∂µϕr(x) +
1
2
m2ϕ�

r(x)ϕr(x)

+
crs,r′s′

4
ϕ�

r(x)ϕ�
r′(x)ϕs′ (x)ϕs(x)

]
, (5)

with ϕr(x) the 3-component, complex, classical field at the
d-dimensional position x, and ∂µ is the d-dimensional gra-
dient. The dimension of the system is generalized from 3
to d for later purposes. Further on we set � = kB = 1. The
bare mass of the field theory is denoted by m2 ≡ −2Mµ,
and the tensor structure of the interaction term takes the
form of

crs,r′s′ =
16π2a0

λ2
B

(
P0

)rs

r′s′
+

16π2a2

λ2
B

(
P2

)rs

r′s′
, (6)

with λB =
√

2π/MT being the de-Broglie wavelength.
The parameters m2 and crs,r′s′ of the bare action (5)

are easily obtained from the finite temperature action [2]
corresponding to the Hamiltonian (1) by simply replacing
the imaginary time dependent fields with time indepen-
dent ones and by integrating out the imaginary time. This
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procedure is clearly a restriction to the zero Matsubara
frequency sector of the full field theory. The effects of the
higher Matsubara frequency components would provide a
physical cutoff to the field theory and change the value of
the above parameters. These questions are not discussed
in this paper since the order of the phase transition is not
sensitive for the actual value of the above quantities.

It is more convenient to introduce the matrices X ≡
P0 +P2 and Y ≡ P2 − 2P0 and to express the bare inter-
action (6) with the help of them:

crs,r′s′ = cnXrs,r′s′ + csYrs,r′s′ , (7)

with

cn =
16π2

λ2
B

a0 + 2a2

3
, (8a)

cs =
16π2

λ2
B

a2 − a0

3
. (8b)

Note that in the case a2 > a0, i.e. in the polar case cs > 0,
while in the ferromagnetic case (a0 > a2) cs < 0.

3 Renormalization up to order of two loops

In the following we suppose that on the critical surface, all
of the renormalized masses are zero. This assumption is
valid in the absence of an external magnetic field and when
the system is in a paramagnetic and non-magnetized phase
above the (spinor) Bose–Einstein condensation. The stan-
dard renormalization group program of the massless the-
ory with dimensional regularization and minimal subtrac-
tion [22,23] will be carried out for the classical field theory,
described by the bare action (5) and interaction (7). The
free propagator corresponding to the quadratic part of the
bare action then reads as:

G(0)rs(p) = δrsG(0)(p) = δrs
2
p2

, (9)

which is just twice the value of the free propagator in a
theory with real fields.

The n-point vertex function is denoted by Γ (n)(pi, c),
with c the bare interaction (7), pi (i ∈ {1 . . . n}) are the
wave-numbers of the vertex function. Γ (n) has n spin in-
dices. The spin indices will be omitted most of the time
for notational simplicity. The renormalization conditions
for the vertex functions then read as:

Γ
(n)
R (pi, κ, g) = Zn/2(g)Γ (n)(pi, c), (10a)

where Z(g) is the field renormalization constant, κ is the
momentum scale, where the renormalization is made, and
g stands for the dimensionless renormalized coupling con-
stant, having the same index structure as the bare one (7).
The connection between the bare and renormalized cou-
pling constants is established by

cij,kl ≡ κεg0ij,kl = κεGij,kl(g), (10b)

Fig. 1. The second order divergent graph
contributing to the 2 point function.
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Fig. 2. The divergent graphs contributing to the 4 pont func-
tion at 1 loop order.

with ε = 4− d, g0 is the dimensionless, bare coupling con-
stant and Gij,kl(g) the coupling constant renormalization
function. The renormalization constants are expanded as
power series of the renormalized coupling constants gij,kl,
according to

Z(g) = 1 + b(2)(g, g), (11a)

Gij,kl(g) = gij,kl + a
(1)
ij,kl(g, g) + a

(2)
ij,kl(g, g, g). (11b)

Here we have introduced the following symbolic notation
for scalar and tensorial quadratic quantities:

b(g, g) = bi1j1,k1l1
i2j2,k2l2

gi1j1,k1l1gi2j2,k2l2 , (12a)

a
(1)
ij,kl(g, g) =

(
a
(1)
ij,kl

)i1j1,k1l1

i2j2,k2l2
gi1j1,k1l1gi2j2,k2l2 , (12b)

respectively, and similarly for the cubic a
(2)
ij,kl(g, g, g). The

2-point and 4-point vertex functions are expanded as:

Γ
(2)
ij (p, g0) = p2δij

[
1 − Σ(2)(g0, g0) + O(g0

3)
]
,

Γ
(4)
ij,kl(pi, g0) = κε

[
g0ij,kl + d

(1)
ij,kl(g0, g0) (13a)

+ d
(2)
ij,kl(g0, g0, g0) + O(g0

4)
]
. (13b)

In equation (13a) p2Σ(2)(g, g) is the two loop contribu-
tion to the self-energy. (The first order term is momen-
tum independent and cancelled, since we assume that the
renormalized masses are zero.) The constants d(1) and d(2)

are the corresponding 1 and 2 loop contributions to the
four-point function.

The divergent graph (up to the order of two loops) con-
tributing to the two point function is plotted in Figure 1.
With the requirement that the renormalized vertex func-
tion (10a) for n = 2 is finite, one obtains, that

b(2)(g, g) = −N2
d

ε

gim,klglk,mi

3
, (14)

with Nd = 2/(4π)d/2Γ (d/2) the usual factor appearing af-
ter each momentum integration. Γ (s) is the Euler gamma
function with argument s.

The divergent graphs contributing to the four point
function at 1 loop level are drawn in Figure 2, while
at 2 loop order are drawn in Figure 3. With the re-
quirement that the renormalized four point function
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Fig. 3. The divergent
graphs contributing to the
4 pont function at 2 loop
order.

[Eq. (10a) with n = 4] is finite, the renormalization con-
stants can be obtained. The one loop contribution is

a(1)(g, g) = Nd
2
ε

[
g(a) + 2

(
g(b) + g(c)

)]
, (15a)

while the two loop contribution reads as:

a(2)(g, g, g) = N2
d

4
ε2

{
g(d) + 2

(
g(g) + g(h)

)
+ g(i) + g(j)

+g(k) +g(l) +2
(
g(m) + g(n) + g(o) + g(p)

)
+8(g(e) +g(f))

− ε
[
− g

gnm,opgpo,mn

6
+ g(g) + g(h) +

1
2
(
g(i) + g(j) + g(k)

+ g(l) + 2
[
g(m) + g(n) + g(o) + g(p)

])]}
, (15b)

with the notations

g
(a)
ij,kl = gim,kngmj,nl, (16a)

g
(b)
ij,kl = gij,mngnm,kl, (16b)

g
(c)
ij,kl = gkj,mngnm,il, (16c)

g
(d)
ij,kl = gim,kngmo,npgoj,pl, (16d)

g
(e)
ij,kl = gij,mngnm,opgpo,kl, (16e)

g
(f)
ij,kl = gkj,mngnm,opgpo,il, (16f)

g
(g)
ij,kl = gim,kngmj,opgpo,nl, (16g)

g
(h)
ij,kl = gim,opgkn,pogmj,nl, (16h)

g
(i)
ij,kl = gij,nmgko,mpgon,pl, (16i)

g
(j)
ij,kl = gkj,nmgio,mpgon,pl, (16j)

g
(k)
ij,kl = gio,mpgoj,pngkl,nm, (16k)

g
(l)
ij,kl = gko,mpgoj,pngil,nm, (16l)

g
(m)
ij,kl = gij,nmgkn,pogmp,ol, (16m)

g
(n)
ij,kl = gkj,nmgin,pogmp,ol, (16n)

g
(o)
ij,kl = gio,pmgoj,npgmn,kl, (16o)

g
(p)
ij,kl = gko,pmgoj,npgmn,il. (16p)

4 Critical properties

The critical properties of the massless theory can be stud-
ied with the help of the β function, defined as

dGij,kl

dgmn,op
βmn,op = −εGij,kl. (17)

The β function can be easily expressed by inverting the
matrix dG/dg perturbatively in g, e.g. with the help of
iteration. The result reads as

β = −εg + 2Nd

[
g(a) + 2

(
g(b) + g(c)

)] − 4N2
d

[
2
(
g(g)

+g(h)
)
+g(i)+g(j)+g(k)+g(l)+2

(
g(m)+g(n)+g(o)+g(p)

)
− g

gnm,opgpo,mn

3

]
+ O(g4). (18)

The tensorial β function (18) splits into two functions,
according to

βij,kl = βn(gn, gs)Xij,kl + βs(gn, gs)Yij,kl, (19)

with X and Y defined above equation (7). The correspond-
ing functions are:

βn(gn, gs) = −εgn + 2Nd

(
7g2

n + 4gngs + 4g2
s

)
− 4N2

d

(
24g3

n + 22g2
ngs + 39gng2

s + 20g3
s) + O(g4), (20a)

and

βs(gn, gs) = −εgs + 2Nd

(
6gngs + 3g2

s

)
− 4N2

d

(
28g2

ngs + 28gng2
s + g3

s) + O(g4). (20b)

These functions are responsible for the flow of the renor-
malized coupling constants under a change of scale:

ρ
dgn,s

dρ
= βn,s(gn, gs) (21)

with ρ being the scale, and gn,s(ρ = 1) = g0
n,s. The IR

behavior (ρ → 0) of the system can be studied with the
help of the IR fixed points of the β function (20).
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−0.18
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G

Fig. 4. The flow diagram and fixed point structure at d = 4
(ε = 0).

At d = 4 four real fixed points exist. The Gaussian
one: G, with (gn, gs) = (0, 0), and three nonphysical fixed
points, which are absent at the one loop calculation. The
fixed point structure and the coupling constant flow is
shown in Figure 4. At d = 4 − ε, with 0 < ε � 1 a new
real fixed point, B, emerges, which is of O(ε). The fixed
point up to O(ε2) is (gn, gs) = (g̃n, 0), with

g̃n =
1

2Nd
ε

(
1
7

+
24
343

ε + O
(
ε2

))
. (22)

This fixed point is the U(3) symmetric fixed point of
Bose condensation. It is stable from the direction of the
Gaussian one, however it is repulsive through the direc-
tion of gs. The fixed point structure and the flow diagram
is shown in Figure 5. Since there is no attractive fixed
point (for gs �= 0), the trajectories “run away”, which
is an indication that both the polar (when gs > 0) and
the ferromagnetic (when gs < 0) Bose condensation is of
first order. Such fluctuation induced first order transitions
are not rare, e.g. the case of a real φ4 theory with cubic
anisotropy [18,19].

The runaway of the trajectories requires an analysis of
the free energy (thermodynamic potential) of the classical
system, or as in the terminology of field theory the effec-
tive action, which is the generating functional of the vertex
functions. The free energy is obtained with the help of the
method of steepest descent up to one loop order [22,23].
The zeroth order (tree-graph) contribution is the bare ac-
tion (5):

1
V

Γ0[ϕ] =
1
2
m2ϕrϕr +

1
4
crs,r′s′ϕrϕsϕr′ϕs′ , (23)

gn

gs

−0.02 0.3

−0.16

0.16

G B

Fig. 5. The flow diagram and fixed point structure at d < 4
(for ε = 0.4). The red lines indicate the boundary of the sta-
bility wedge of the zeroth order contribution of the free energy
(see below).

with ϕ being real and homogeneous. The free energy (23)
describes a continuous phase transition at m2 = 0. V = Ld

is the volume of the system. For m2 < 0 and cs > 0 (polar
case) the homogeneous field minimizing the potential (23)
can be chosen as ϕr = ϕ × (0, 1, 0)r, which has zero mag-
netization, while for cs < 0 (ferromagnetic case) the mini-
mizing solution can be taken as ϕr = ϕ× (1, 0, 0)r, which
has maximal magnetization. With these solutions the free
energy at tree-graph level takes the following forms:

1
V

Γ pol
0 [ϕ] =

1
2
m2ϕ2 +

1
4
cnϕ4, (24a)

1
V

Γ ferr
0 [ϕ] =

1
2
m2ϕ2 +

1
4
(cn + cs)ϕ4. (24b)

In the polar case (cs > 0) the tree graph thermodynamic
potential (24a) is bounded from below only if cn > 0,
while in the ferromagnetic case (cs < 0) equation (24b)
is confining only if cn + cs > 0. The line of stability is
therefore cn = 0 for cs > 0 and cn + cs = 0 for cs < 0.
As can be seen in Figure 5 all interesting trajectories with
gs �= 0 reach the stability boundaries of the tree graph
free energy and go outside the region of stability. It is
therefore mandatory to calculate the next order contri-
bution. Following the standard technique [22,25,26] (but
with complex fields) the one-loop contribution of the free
energy reads as

1
V

Γ pol
1 [ϕ] =

1
2

∫
d3k

(2π)3

{
log

[(
k2 + m2 + 2cnϕ2

)2

− c2
nϕ4

]
+ 2 log

[(
k2 + m2 + (cn + cs)ϕ2

)2 − c2
sϕ

4
]}

(25a)



432 The European Physical Journal D

in the polar case, while

1
V

Γ ferr
1 [ϕ] =

1
2

∫
d3k

(2π)3

{
log

[(
k2 + m2 + 2(cn + cs)ϕ2

)2

− (cn + cs)2ϕ4
]

+ 2 log
[
k2 + m2 + (cn + cs)ϕ2

]

+ 2 log
[
k2 + m2 + (cn − cs)ϕ2

]}
(25b)

in the ferromagnetic case. The integrals appearing in equa-
tions (25) are divergent. Carrying out the renormalization
scheme renders them finite:

1
V

Γ1[ϕ] = f(ν1) + f(ν2) + 2f(ν3) + 2f(ν4) (26a)

both for the polar and ferromagnetic cases, with

νpol
1 = t + 3gnϕ2, (26b)

νpol
2 = t + gnϕ2, (26c)

νpol
3 = t + (gn + 2gs)ϕ2, (26d)

νpol
4 = t + gnϕ2 (26e)

in the polar case and

νferr
1 = t + 3(gn + gs)ϕ2, (26f)

νferr
2 = t + (gn + gs)ϕ2, (26g)

νferr
3 = t + (gn + gs)ϕ2, (26h)

νferr
4 = t + (gn − gs)ϕ2 (26i)

in the ferromagnetic one. Here we introduced t the renor-
malized, dimensionless temperature, and measured the
field ϕ in units of κ1−ε/2, with κ being the scale of
the renormalization. The function f appearing in equa-
tion (26a) is given by

f(x) =
x2

8

(
log x +

1
2

)
. (27)

The sum of equations (23) and (26a) gives the free energy
of the classical system (5) in next to leading order.

On the border of stability the free energy up to one-
loop order (both for the polar and ferromagnetic cases)
can be cast to the form (with neglecting terms not de-
pending on ϕ):

1
V

Γ [ϕ] =
1
2
tϕ2 + 2f

(
t + 2|gs|ϕ2

)
. (28)

The potential (28) describes systems with a first order
phase transition for 0 < |gs| = O(ε). It is worth to note
that in the Hartree approximation made for the quan-
tum theory of the spin-1 Bose gas directly in 3 dimen-
sions [27,28], or in the equivalent lattice mean-field calcu-
lation also made directly in 3 dimensions [29] the phase
transition was found to be of first order for small coupling
constant values (at least for the ferromagnetic case).

5 Summary

In summary, we have studied the critical properties of
spin-1 Bose gases with the assumption that the phase tran-
sition to the polar and to the ferromagnetic Bose–Einstein
condensed phases is of second order. In this case the uni-
versal IR behavior of the quantum system (1) can be stud-
ied with the help of a classical field theory (5) obtained by
restricting the fields to the zero Matsubara frequency sec-
tor. The machinery of the field-theoretical renormalization
group then was applied to the classical field theory. The β
function was determined up to the order of two loops in
the massless theory. It was found that the only at least
partially stable physical fixed point (for d < 4) is the U(3)
symmetric one of Bose–Einstein condensation with gs = 0.
However this fixed point was found to be repulsive towards
the direction of gs. This indicates that all trajectories of
systems with nonzero gs tend towards the border of the
classical stability wedge with successive scale transforma-
tions. The free energy [on the boundary of the stability
wedge (28)] of the classical system (5) was determined in
next to leading order in the method of steepest descent. It
was found that both in the polar and ferromagnetic cases
the free energy develops a second local minimum (besides
the trivial one), which turns to be a global minimum at
a certain temperature above t = 0 (before the second or-
der phase transition sets in). This shows that the classical
system described by the bare action (5) exhibits a first
order phase transition for 0 < |gs| = O(ε), at least near
four dimensions. This contradicts our assumption that the
polar and ferromagnetic Bose–Einstein condensations are
continuous phase transitions (if they were, the classical
description would yield also a continuous phase transi-
tion), and shows that the phase transition is indeed of
first order both for the polar and ferromagnetic gases and
that the jump in the thermodynamic quantities depend
on the smaller coupling constant: gs. One can regard the
presented approach as an indirect proof.

The present work has been initiated in a visit to the Utrecht
University and was supported by the European Science Foun-
dation under the project BEC2000+. The author is indebted
to prof. H. Stoof for useful discussions and for his hospitality.
The author is also indebted to profs. A. Patkós, L. Sasvári and
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